The Frequent Items Problem in Online Streaming under Various Performance Measures
نویسندگان
چکیده
In this paper, we strengthen the competitive analysis results obtained for a fundamental online streaming problem, the Frequent Items Problem. Additionally, we contribute with a more detailed analysis of this problem, using alternative performance measures, supplementing the insight gained from competitive analysis. The results also contribute to the general study of performance measures for online algorithms. It has long been known that competitive analysis suffers from drawbacks in certain situations, and many alternative measures have been proposed. However, more systematic comparative studies of performance measures have been initiated recently, and we continue this work, using competitive analysis, relative interval analysis, and relative worst order analysis on the Frequent Items Problem.
منابع مشابه
J un 2 01 3 The Frequent Items Problem in Online Streaming under Various Performance Measures ∗
In this paper, we strengthen the competitive analysis results obtained for a fundamental online streaming problem, the Frequent Items Problem. Additionally, we contribute with a more detailed analysis of this problem, using alternative performance measures, supplementing the insight gained from competitive analysis. The results also contribute to the general study of performance measures for on...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملCompetitive Analysis of Aggregate Max in Windowed Streaming
We consider the problem of maintaining a fixed number k of items observed over a data stream, so as to optimize the maximum value over a fixed number n of recent observations. Unlike previous approaches, we use the competitive analysis framework and compare the performance of the online streaming algorithm against an optimal adversary that knows the entire sequence in advance. We consider the p...
متن کاملStreaming Min-max Hypergraph Partitioning
In many applications, the data is of rich structure that can be represented by a hypergraph, where the data items are represented by vertices and the associations among items are represented by hyperedges. Equivalently, we are given an input bipartite graph with two types of vertices: items, and associations (which we refer to as topics). We consider the problem of partitioning the set of items...
متن کاملFrequent items in streaming data: An experimental evaluation of the state-of-the-art
The problem of detecting frequent items in streaming data is relevant to many different applications across many domains. Several algorithms, diverse in nature, have been proposed in the literature for the solution of the above problem. In this paper, we review these algorithms, and we present the results of the first extensive comparative experimental study of the most prominent algorithms in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Found. Comput. Sci.
دوره 26 شماره
صفحات -
تاریخ انتشار 2013